Hydrological Application of OS Data:

The Lambro Catchment Case Study

Greta Cazzaniga¹, Andrijana Todorovic², Cristina Deidda³, Carlo De Michele⁴, Roberto Nebuloni⁵

- (1) Université Paris Saclay, Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France; greta.cazzaniga@lsce.ipsl.fr
- (2) University of Belgrade, Faculty of Civil Engineering, Belgrade, Serbia; atodorovic@grf.bg.ac.rs
- (3) Vrije Universiteit Brussel, Department of Water and Climate, Brussel, Belgium; cristina.deidda@vub.be
- (4) Politecnico di Milano, Department of Civil and Environmental Engineering, Milano, Italy; carlo.demichele@polimi.it
- (5) IEIIT, Consiglio Nazionale delle Ricerche, Milano, Italy; roberto.nebuloni@ieiit.cnr.it

Hydrological modelling

- Hydrological (rainfall-runoff) models are essential for sustainable water resources management
 - Estimation of values of hydrological variables (e.g., flows at ungauged sites, or flows in the future, i.e., streamflow forecasting)
 - Analyses of various scenarios
- Rainfall data is of utmost importance for hydrological modelling
 - Information on rain depth, rainfall dynamics and its spatial variability are needed

Hohmann et al., 2021 https://doi.org/10.3390/w13101381

Rainfall data in hydrological modelling

- Rainfall data are traditionally being obtained from the raingauges
 - Rain gauge observations are affected by the wind, the number of the gauges can decrease over time, majority of gauges are located at lower elevation...

Sharma et al., 2020 https://doi.org/10.1029/2020EA001315

Dhurmea et al., 2009 Conference: 3rd Research Week 2009-2010, International Conference, University of Mauritius

- Recent tendencies to use radar- or satellite rainfall data
 - Indirect rainfall observations

Why using OS data in hydrological modelling?

- Obtaining rainfall data remains costly, and these data remain accompanied by uncertainties
- A promising avenue for future development: opportunistic sensing
 - Potential to extend the monitoring network and get rainfall data (almost) at no additional costs
 - ... and to advance hydrological modelling
- Some of the opportunistic sensing (OS) techniques: personal weather stations, satellite microwave links, commercial microwave links (CML)

COST OpenSense https://opensenseaction.eu/news/transboundaryrainfall-estimation-using-commercial-microwave-links/

Our project

Investigating the potential of CML-retrieved rainfall data for hydrological modelling

Nebuloni et al., 2022 https://www.ursi.org/Publications/RadioScie nceLetters/Volume2/RSL20-0062-final.pdf

The Lambro catchment

Lake

Peri-urban region (Lambro-Seveso-Olona)

The Lambro catchment

Rainfall measurements

50 commercial microwave links (CML)
13 rain gauges (RG)
radar

Temperature

8 thermometers

River discharge hydrometer

Rainfall datasets on the Lambro catchment

Rain gauges

TIME RESOLUTION

10 minutes

ACCURACY

0.2 mm

AVAILABILITY

- Available at <u>https://www.arpalombardia.it/</u>
- Data from January 2018 until June 2020

TIME RESOLUTION 5 minutes

SPATIAL RESOLUTION 1km x 1km

AVAILABILITY

- Available on demand from <u>MétéoSuisse</u> with a small fee for data extraction
- Data from October 2019 until June 2020

Commercial microwave links

TIME RESOLUTION

15 minutes MIN-MAX power data

ACCURACY

1 dB

AVAILABILITY

- For a fee and confidential (provided by Vodafone)
- 12 rainy events from June 2019 until June 2020

Rainfall retrieval from CML data

Overeem et al. 2016 https://doi.org/10.1073/pnas.1217961110

Some details on the data processing:

 $\rightarrow A = LkR^{\alpha}$ Calibration of k and α parameters from the Drop Size Distribution of hydrometeors (from disdrometers)

Nebuloni et al., 2022

$$\rightarrow \bar{R} = \frac{1}{1.14} \cdot \frac{R_{min} + R_{max}}{2}$$
 Unbiased estimator for 15 minutes average rain intensities
Nebuloni et al., 2020

Rainfall measurements: CML vs rain gauges

Comparison between CML and rain gauges accumulated rainfall

Rainfall measurements: CML vs rain gauges

Comparison between CML and rain gauges accumulated rainfall

The hydrological model

Sub-catchment or hydrological response unit (HRU)

The hydrological model

Semi-distributed model - CML Altitude (m a.s.l.) RG 0-200 200-400 A TH Monza River section/FG 400-600 Catchment 600-800 800-1000 HRU >1000 - River 1 2 km Lake

Brooks and Corey, 1964

The hydrological model

- CML Altitude (m a.s.l.) RG 0-200 200-400 A TH Monza 400-600 River section/FG 600-800 Catchment 800-1000 HRU >1000 - River 1 2 km -Lake

Semi-distributed model

- Continuous and event-based simulation at hourly time scale
- Calibration over 1 year of data, maximizing the Nash-Sutcliffe efficiency

Integration of rainfall data into the hydrological model

CML- and RG-based data: Inverse distance weighting method

Integration of rainfall data into the hydrological model

Rainfall measurements: CML vs rain gauges vs radar

Cumulative rainfall depth (mm)

Event #3

RG	68.47	71.64	60.74	60.11	80.44	76.48	76.39	71.3	81.97	85.27	84.27	91.03	84.57	70.1	58.83	74.77
VR	70.67	67.9	72.37	72.49	69.1	74.3	81.44	66.57	91.86	94.22	63.72	84.76	77.48	82.59	61.34	75.39
VR-RG	69.32	70.06	71.67	71.12	79.59	76.11	81.18	67.2	90.75	93.38	64.61	86.74	77.65	77.63	61.27	75.89
RADAR	53.69	59.5	52.63	45.19	56.82	48.02	64.22	59.02	48.65	47.06	48.81	62.42	62.56	51.33	41.22	53.41
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Underestimates due to the HRU presence of mountains																

RG - rain gauge VR - virtual rain gauge (CML data) VR-RG - rain gauge and CML data combined RADAR data

For some events the radar is unable to capture the rainfall dynamics

Results – Sensitivity to the rainfall input

Rainfall input affects simulated hydrographs by the reference model

Results – Sensitivity to the rainfall input

Observed vs simulated streamflows by the reference model

1	-0.715	-0.2695	-0.2401	-2.509	- 0.5
2	0.8586	0.73	0.7673	-0.5368	0.0
3	0.4125	0.05261	0.544	0.06081	- 0
4	0.5535	0.5376	0.5455	0.561	0.5
5	5 -0.2482	-0.7759	-0.5253	-1.86	1
# 6	0.7549	0.4305	0.4652	-0.6509	1.5
vent	0.8941	-3.524	-2.63	-4.687	2
Ш	0.5472	-2.602	-2.143	0.64	-2.5
ę	-0.5409	-1.228	-1.063	-0.4361	
10	0.475	-0.4219	-0.3793	-1.587	3
11	0.6097	0.02388	0.07669	-0.3044	3.5
12	-2.893	-4.237	-4.031	-0.3711	4
13	0.6539	0.1432	0.2386	0.2439	4.5
	RG	VR	VG-RG	RADAR	
		Kainta	li Data		

13

NSE

0.1296 0.5634 -0.006393 0.5517 1 0.9 2 0.9677 0.9542 0.9534 0.4488 3 0.756 0.921 0.896 0.8718 0.8 0.9529 0.9509 4 0.946 0.8648 0.7 0.6028 0.7214 5 0.7453 0.5841 0.6 0.997 0.9911 0.9905 0.9963 6 Event # 7 0.5 0.9587 0.8772 0.589 0.9073 8 0.9573 0.9313 0.9328 0.9253 0.4 9 0.6459 0.5287 0.5624 0.4604 0.3 10 0.843 0.9071 0.9055 0.7311 0.2 11 0.8719 0.9182 0.9177 0.6487 12 0.645 0.3545 0.4486 0.8221 0.1 13 0.8844 0.8562 0.8643 0.6502 - 0 RG VR VG-RG RADAR **Rainfall Data**

Pearson correlation coefficient

Results – Sensitivity to the rainfall input

Errors in the simulated streamflows by the reference model

14

● RG XVR ● VR-RG ◆ RADAR

Error in Peak

RG XVR OVR-RG ORADAR

Results – Transferability across rainfall data

Parameter optimisation cannot compensate for the adequacy of rainfall data

• Additional model calibrations were performed for different rainfall data

Results – Transferability across rainfall data

Performance during a single rain event

16

Conclusions

Validation of rainfall measurements

- high-intensity events detected by CML are in a good accordance with RG measurements;
- * inability of CMLs to detect low rain rates, due to the coarse 1dB quantization step of raw data
- radar-based rainfall measurements tend to underestimate with respect to RG and CML data, due to the presence of mountains in the study region.

Validation of CML-derived streamflows

- high model performance can be obtained with the CML-derived rainfall data, although performance can vary across the events;
- Iimited transferability of models with the respect to the different rainfall data.

CML - nearby RGs comparison

