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Sewer systems – major step in sanitation

Prague sewer system – old municipal 
wastewater treatment plant

Tokyo  Metropolitan Area Outer 
Underground Discharge Channel



Limitations of combined sewer systems

Sewer capacity is limited: 

2-5 years rainfall return period

Sewage overflow during rainfall
(6000 CSO in CZ)

Pluvial flooding in Sweden, 2018

Mixing of foul sewage and 

storm water

Amplifiers: urbanization, climate change, pharmaceuticals, …

WWTP capacity and treatment 

efficiency during rainfall

Wastewater treatment plant
(Capacity is 2-3 mean daily discharge)



Stormwater management requires rainfall data

You have a 
problem!

In-sewer measures Catchment measures

Cowabunga!
I have 

rainfall data
Efficient planning and design of in-sewer measures as well as sewer and 
WWTP operation require drainage models and high-quality rainfall data



Commercial microwave links for urban drainage modelling

• High ratio of impervious surfaces

• Drained by sewers with CSOs

• Short time of concentration

• Dynamic response to rainfall space-time 
variability

• High requirements on rainfall data 
resolution both in space (1 km2) and 
time (1 min)

Urban catchment characteristics CML characteristics and potential



Commercial microwave links for urban drainage modelling

• High ratio of impervious surfaces

• Drained by sewers with CSOs

• Short time of concentration

• Dynamic response to rainfall space-time 
variability

• High requirements on rainfall data 
resolution both in space (1 km2) and 
time (1 min)

Urban catchment characteristics

• Densest in urban catchments

• ∆t =< 1 min

• Close-to-ground observations

• Data accessible operationally

CML characteristics and potential



Commercial microwave links for urban drainage modelling

• High ratio of impervious surfaces

• Drained by sewers with CSOs

• Short time of concentration

• Dynamic response to rainfall space-time 
variability

• High requirements on rainfall data 
resolution both in space (1 km2) and 
time (1 min)

Urban catchment characteristics

• Densest in urban catchments

• ∆t =< 1 min

• Close-to-ground observations

• Data accessible operationally

• Completing standard networks for 
drainage-model calibration

• Real-time control of sewer and WWTP, 
early warning, …

CML characteristics and potential
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Main (research) question

What is the potential of CMLs for urban rainfall-runoff 

modeling and how to properly process CML data?

Obtain rainfall information suitable for rainfall-runoff modelling 
in urban catchments of different sizes from attenuation data of 
multiple CMLs with diverse characteristics



From research towards application

SNMP-based DAQ 

for approx. 20 CMLs

Start of collaboration 

between CTU and

T-Mobile 

Extension of DAQ to 

Prague and 2 other

cities in CZ

First E-Band 

CML data 

collected

2012 2014 2016 2018 2020 2022 2024

Extension of DAQ 

to the whole Czech 

Republic

Piloting real-time supply 

of data with Olomouc 

Water utility



CML & Urban drainage case studies

Prague-Letnany (area 1.3 km2) Prague – trunk sewer (~30 km2) Olomouc (area ~100 km2)

Small (experimental) catchment 
with most demanding 
requirements on rainfall data

Larger catchments with 
detailed rainfall runoff model

Real-time access to data, 
operational data-driven 
modeling

WWTP
23 GHz

32 GHz
26 GHz

38 GHz
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CML rainfall retrieval – wet antenna matters

Baseline identification

Wet antenna correction

Raindrop attenuation
to rainfall intensity

Rain-induced 
attenuation

≈ dry-weather 
attenuation
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CML rainfall retrieval – wet antenna matters

Baseline identification

Wet antenna correction

Raindrop attenuation
to rainfall intensity

Rain-induced 
attenuation

≈ dry-weather 
attenuation
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CML processing chain CML attenuation data

Specific raindrop 
attenuation (dB km-1)

major source 
of bias by 
short CMLs



Evaluating CML potential for urban drainage modeling
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k-R 
model

CML attenuation

Comparing observed runoff with runoff simulated based on different observation layouts:

Flow at the outlet of 
a catchment



Evaluating CML potential for urban drainage modeling

Error
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Surface runoff Sewer discharge Observed discharge
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CML attenuation

R (mm h-1) Simulated dischargeRain gauge

R-R 
model Error

Comparing observed runoff with runoff simulated based on different observation layouts:

Flow at the outlet of 
a catchment



Potential of CML data alone without fine-tuning

Data

• 19 CMLs (∆t = 1 min), constant WAA

• 3 tipping-bucket rain gauges in the catchment 

• 3 municipal tipping-bucket rain gauges 
outside the catchment (∆H = 0.1 mm)

• flowmeter, ∆t = 2 min

• 2.5 year of data (56 events)

Evaluation

• Event-based simulated/observed runoff comparison

• Error in runoff volume (dV)

• Correlation (PCC)

Catchment & model characteristics:

• A = 1.3 km2, 35 % impervious surfaces

• Lag time between rainfall and runoff 
peaks approx. 20 min

• EPA-SWMM, hydrodyn. distributed model



Potential of CML data without fine-tuning

Evaluation for all events: Conclusions:

• Bias decreases with increasing length 
(sensitivity)

• No clear link between correlation and 
CML length in overall evaluation

• The best performance is achieved when 
averaging all CML rain rates



Potential of CML data without fine-tuning

Evaluation for heavy rainfalls (Rmax>12 mm h-1): Conclusions:

• Bias in simulated runoff decreases with 
increasing length (sensitivity)

• No clear link between PCC and CML 
length in overall evaluation

• The best performance is achieved when 
averaging all CML rain rates

• For heavy rainfalls:

• Simulated runoff has higher PCC  for 
shorter CMLs

• Simulation based on all averaged 
CMLs outperform rain gauges



Potential of CML data without fine-tuning

Case at Prague trunk sewer E,F:

• A ≈ 30 km2, 24 CSOs
• Lag time between rainfall and runoff 

peaks approx. 1-2 h

• Mike Urban, hydrodynamic distributed 
model

• Flow measurements at the outlet (H, Q)

Input data:

• ~100 CMLs, 40 – 45 CMLs inside the catchment

• 5 rain gauges

• Unadjusted radar (CAPPI 2000,  1 x 1 km2, ∆t = 5 min)

• 10 heavy rain events

Observed vs. simulated runoff:
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• How to reduce bias caused by wet antenna attenuation using observations 
commonly available in urban areas?

Parameter 
optimization

Error

Rain-gauge tips

CML attenuation

R
ai

n
fa

ll

R (mm h-1)

R (mm h-1)
WAA 

model

catchment

RG_hourly

Rain-gauge calibration

Reducing CML bias with existing standard observations
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Error

R
ai

n
fa

ll

R (mm h-1)
R-R 

model

Simulated discharge

Surface runoff Sewer discharge Observed discharge

Parameter 
optimization

WAA 
model

• How to reduce bias caused by wet antenna attenuation using observations 
commonly available in urban areas?

CML attenuation

Runoff-based calibration

Investigating the potential of CMLs for urban drainage modelling



Rainfall observation layouts used for R-R modeling

Three rainfall observations layouts

A) CMLs (areal rainfall):

1. Optimized to the remote RG

2. Optimized to the 3 municipal RGs

3. Optimized to the flow data

B) 3 municipal RGs (areal rainfall)

C) 3 benchmark RGs (distributed rainfall)

Dataset

• 2.5 years of data

• 23 calibration events

• 23 validation events



Simulated vs. observed runoff from RG and CML layouts

B - 3 municipal RGs 3 benchmark RGs

Metrics:
dV – relative error in volume (-) SCC – Spearman correlation coef. (-) RMSE – root mean square error (l s-1)

WAA optimized to flow data

A3 - CMLs

Observed runoff (l s-1)
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Simulated vs. observed runoff from RG and CML layouts

B - 3 municipal RGs 3 benchmark RGs

Metrics:
dV – relative error in volume (-) SCC – Spearman correlation coef. (-) RMSE – root mean square error (l s-1)

WAA optimized to flow data

A3 - CMLs

WAA optimized to  3 municipal RGs

A2 - CMLs

WAA opt. to the remote RG

A1 - CMLs

Observed runoff (l s-1)
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Modeling runoff uncertainty

Error
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Modeling runoff uncertainty

error 
model

Error

R
ai

n
fa

ll

R (mm h-1) R-R 
model

Simulated discharge

Surface runoff Sewer discharge Observed discharge

Bayesian par. 
optimization

WAA 
model

CML attenuation

Yo (x,𝜃,Ψ) = 𝑦𝑀 (x,𝜃)

*
observation

deterministic 
model

Bias + random 
noise

+ B(Ψ) + E(Ψ)

*Reichert, P. & Schuwirth, N. (2012). Linking statistical bias description to multiobjective model calibration. Water Res. Research, 48.

• Use calibration events to infer posterior distributions of error model parameters using 
MCMC method

• During validation generate from multivariate distribution of error model paramerers 
ensemble of 2000 realizations and calculate 90% uncertainty bands
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Case-study conclusions

• CMLs can provide precise discharge predictions when calibrated using existing 
runoff data or rain gauges (even when they are far away)

• Runoff model can be extended by an error model and provide reliable 
uncertainty estimates

CMLs can conveniently complement existing observation networks and 
improve runoff  simulations of existing calibrated urban-drainage models
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Commerccial microwave links – Case study Olomouc

Can the operational CML attenuation data be used directly for 
modelling the rainfall runoff (inflow to the WWTP)?

i.e. without conversion to rainfall intensity

Assess the potential of CMLs for operational (real-time) 
modelling of the inflow to the Olomouc WWTP

CML data were delivered operationally to Olomouc water utility during the year 2022



35

Material

CML data available online

12 Ericsson MINILINK CMLs

frequency 23-38 GHz

 time step 1 min

Flow data

 Trunk sewer before the inflow to WWTP

 Ultrasonic area-velocity flow meter

 Time step 30 s

Custom-made data-driven attenuation-runoff model

WWTP
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Model performance

Model reproduces well

• Beginning of rainfall runoff

• Timing of peak runoff

5. – 9. 8.       2022 25. – 30. 7. 2022 

• Slow runoff after rainfall events
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Case-study conclusions

The simulated flow rates are well correlated with the measurements 
(r = 0.75) and with no systematic bias

Systematic errors of CMLs are effectively compensated by optimizing 
the parameters of the conceptual rainfall-runoff model

CMLs have considerable potential for operational runoff modeling in 
the closing profile of a large urban catchment

Business model is missing to ensure sustainable long-term data 
availability



Lessons learned - outlook

• CML-based runoff simulations capture very well rainfall temporal dynamics but are often 
biased

• Existing observations can be conveniently used to calibrate a WAA model and thus 
eliminate the bias even by relatively short CMLs

• Real-time CML rainfall data can be conveniently used as an input for data-driven rainfall-
runoff models

• Water utilities require high (and long-term) data availability -> business models are missing

Further research concentrates on:

• Data-driven rainfall-runoff modeling, automated quality-control algorithms, rainfall spatial 
reconstruction at small-scale, methods for merging CMLs with other (OS) observations
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